Did you know that Earth's orbit around the S un is not a perfect circle? Although it is close to being circular, the actualshape of Earth's orbit is described by an ellipse (similar to an oval). All of the plane ts, the ir moons, the asteroids, and comets have ellipticalorbits. The degree of roundness of an ellipse is called eccentricity. The orbits of all the planets in our solar system are ne arly circular and are therefore said to have loweccentricity. Asteroids and comets, on the other hand, may have orbits that are fighly eccentric, meaning their orbits are greatly elongated (not round).

Because Earth traces a slightly elliptical path around the S un, the distance from Earth to the Sun varies over the course of a year. Earth's closest approach to the S un is called the perifelion. Its most distant point from the S un, 180° opposite the perifielion, is called the aphelion. The S un is positioned at one of the foci of the ellipse (the other focus being an imaginary point in space). These spatial relationships are exaggerated in the diagram below.

Many people mistakenly believe that our seasons are caused by variations in the Earth-S und dstance. But notice that aphelion occurs in the middle of winter in the \mathcal{N} orthern Hemisphere. In fact, it is the tilt of Earth's axis that is responsible for our seasons, not the shape of Earth's orbit.

1) What fappens to the eccentricity of an elfipse as you increase the distance between foci?

The ellipse becomes less like a circle and more like an elongated oval.

2) What is the result when the fociare so close together that they become the same point (the distance between them is zero)?

The ellipse becomes a circle.
3) The eccentricity of Eartf's orbit is a very low 0.017. If eccentricity is mathematically defined as the ratio of one-half the distance between the foci and one-half the length of the major axis, what is the distance between the foci of Earth's orbit? (Hint: Ulse the average Earth-S undistance of $150,000,000 \mathrm{~km}$ in the denominator.)

Eccentricity $=\frac{\text { One }- \text { half the distance between } F 1 \text { and } F_{2}}{\text { One }- \text { half the length of the major axis }}$
$0.017=$ one - half the distance between foci/ 150,000,000 km
Distance between foci $=0.017 \times 150,000,000 \mathrm{~km} \times 2=5,100,000 \mathrm{~km}$ (1,580,000 miles)
4) Astronomers have determined that the eccentricity of Earth's orbit changes over long periods of time, varying from 0 to about 0.06 . This variation is believed to be a factor inglobal warming and cooling cycles. Why do you think the changing elliptical shape of Earth's path around the Sun could have an effect on global temperatures?

The changing distances between the Earth and sun would change the amount of solar energy reaching Earth at different times of the year. The changing solar energy could affect climate.

