1) Why do you add the exponents to simplify $3^{2} x^{3^{4}}$, but multiply the exponents to simplify the expression $\left(3^{2}\right)^{4}$?
$3^{2} x^{3^{4}}$ means $\left(\begin{array}{lll}3 & x\end{array}\right) \times\left(\begin{array}{lllll}3 & x & x & x & x\end{array}\right)$; the factor 3 occurs 6 times, and $2+4=$ 6, so that is why you add the exponents.
$\left(3^{2}\right)^{4}$ means $\left(\begin{array}{lll}3 & x & 3\end{array}\right) \chi\left(\begin{array}{lll}3 & \chi & 3\end{array}\right) \chi\left(\begin{array}{lll}3 & x & 3\end{array}\right) \chi\left(\begin{array}{lll}3 & x & 3\end{array}\right) ;$ the factor 3 occurs 8 times, and $2 \times 4=8$, so that is why you multiply the exponents.
2) a) What is the difference between a quotient of powers and a power of a quotient?
\mathcal{A} quotient of powers is one power divided by another power such as $10^{3} / 10^{2}$. A power of quotients is a number divided by another number, and raised to the same power, such as $\left(\frac{4}{10}\right)^{3}$.
3) What is the difference between a product of powers and a power of a product?
\mathcal{A} product of powers is one power multiplied by another power. Ex. $3^{3^{2}} x^{3^{4}}$

A power of a product in one number multiplied $6 y$ another number, and this product is raised to a power, such as $(3 \times 4)^{2}$.
3) In Example 3, is it easier to Key the original expressions in a calculator or use the exponent laws to simplify first? Iustify your answer.

It may be easier to simplify first and then use a calculator because evaluating with a calculator would require using a lot of buttons.

