Problem of the Week
 Grade 7 and 8

Fractions to the Max Solution

Problem

In the expression $\frac{a}{b}+\frac{c}{d}+\frac{e}{f}$, each letter is replaced by a different digit from $1,2,3,4,5,6$. Each digit can be used exactly once. What is the largest possible value of this expression?

Solution 1

The largest fractions will be created by putting the three smallest numbers, 1 , 2 , and 3 , in the denominators and then placing the numbers 4,5 , and 6 in the numerators. We will do this in every possible way, determine the sums and choose the largest.

There are six different possible sums in which 1,2 , and 3 are the denominators and 4,5,6 are the numerators.
(1) $\frac{4}{1}+\frac{5}{2}+\frac{6}{3}=\frac{24}{6}+\frac{15}{6}+\frac{12}{6}=\frac{51}{6}$
(2) $\frac{4}{1}+\frac{6}{2}+\frac{5}{3}=\frac{24}{6}+\frac{18}{6}+\frac{10}{6}=\frac{52}{6}$
(3) $\frac{5}{1}+\frac{4}{2}+\frac{6}{3}=\frac{30}{6}+\frac{12}{6}+\frac{12}{6}=\frac{54}{6}$
(4) $\frac{5}{1}+\frac{6}{2}+\frac{4}{3}=\frac{30}{6}+\frac{18}{6}+\frac{8}{6}=\frac{56}{6}$
(5) $\frac{6}{1}+\frac{4}{2}+\frac{5}{3}=\frac{36}{6}+\frac{12}{6}+\frac{10}{6}=\frac{58}{6}$
(6) $\frac{6}{1}+\frac{5}{2}+\frac{4}{3}=\frac{36}{6}+\frac{15}{6}+\frac{8}{6}=\frac{59}{6}$

Therefore the largest possible value of the expression is $\frac{59}{6}$. It should be noted that this approach would not be practical if more numbers were involved. Be sure to look at solution 2 for a more logical approach.

Solution 2

We can start by observing that to get a fraction with the highest value we need a 6 in the numerator. The choice of denominators is possibly obvious as well. $\frac{6}{1}=6, \frac{6}{2}=3, \frac{6}{3}=2, \frac{6}{4}=1.5$, and $\frac{6}{5}=1.2 \cdot \frac{6}{1}$ is the largest fraction and any numerator other than 6 will produce a lower value.

Now we have four numbers left to place: $\{2,3,4,5\}$.
Of these remaining numbers, since 5 is the largest it should go in the numerator. Then $\frac{5}{2}=2.5, \frac{5}{3} \doteq 1.7$, and $\frac{5}{4}=1.25 . \frac{5}{2}$ is the largest fraction and any numerator other than 5 will produce a lower value.

Now we have two numbers left to place: $\{3,4\}$.
Our only two choices for the third fraction are $\frac{4}{3} \doteq 1.3$, and $\frac{3}{4}=0.75$. So $\frac{4}{3}$ is the third fraction.

We can now determine the largest possible sum.

$$
\begin{aligned}
\text { Largest Possible Sum } & =\frac{6}{1}+\frac{5}{2}+\frac{4}{3} \\
& =\frac{36}{6}+\frac{15}{6}+\frac{8}{6} \\
& =\frac{59}{6} \text { or } 9 \frac{5}{6}
\end{aligned}
$$

\therefore the largest possible sum that can be made from the numbers $1,2,3,4,5$, and 6 in the expression $\frac{a}{b}+\frac{c}{d}+\frac{e}{f}$ is $\frac{59}{6}$ or $9 \frac{5}{6}$ (approximately 9.83).

