Problem of the Week Grade 7 and 8

A Griddy Performance Solution

Problem

Three of the vertices of square $A B C D$ are located at $A(0,3)$, $B(4,0)$, and $C(7,4)$.
(a) Determine the coordinates of the fourth vertex, D.
(b) Determine the area of square $A B C D$.

Solution

To determine the coordinates of D, observe that to get from A to B, you would go down 3 units and right 4 units. To get from B to C, you move 3 units to the right and then 4 units up. Continuing the pattern, go up 3 units and left 4 units you get to $D(3,7)$. Continuing, as a check, go left 3 units and down 4 units, and you arrive back at A.

Determining the area of $A B C D$ without using the Pythagorean Theorem

Draw a box with horizontal and vertical sides so that each vertex of the square $A B C D$ is on one of the sides of the box. This creates a large square with sides of length 7 containing four identical triangles and square $A B C D$. Each of the triangles has a base 4 units long and height 3 units long.

$$
\text { Area } \begin{aligned}
A B C D & =\text { Area of Large Square }-4 \times \text { Area of One Triangle } \\
& =\text { Length } \times \text { Width }-4 \times(\text { Base } \times \text { Height } \div 2) \\
& =7 \times 7-4 \times(4 \times 3 \div 2) \\
& =49-4 \times 6 \\
& =49-24 \\
& =25 \text { units }^{2}
\end{aligned}
$$

D is located at $(3,7)$ and the area of the square is 25 units 2. (See the next page for a solution to the area problem using the Pythagorean Theorem.)

Determining the area of $A B C D$ using the Pythagorean Theorem

Since $A B C D$ is a square, it is only necessary to find the length of one side. We can determine the area by squaring the length of the side.

Let the origin be $O(0,0)$. Then $O A B$ forms a right triangle. $O A$, the distance from the origin to point A on the y-axis, is 3 units. $O B$, the distance from the origin to point B on the x-axis, is 4 units.

Using the Pythagorean Theorem, we can find $A B^{2}$ which is $A B \times A B$, the area of the square.

$$
\begin{aligned}
A B^{2} & =O A^{2}+O B^{2} \\
& =3^{2}+4^{2} \\
& =9+16 \\
& =25
\end{aligned}
$$

\therefore the area of the square is 25 units 2.

