Problem of the Week Grade 7 and 8 POWERful Solution

Problem

8^{3} means $8 \times 8 \times 8$ and equals 512 when expressed as an integer. When 8^{2011} is expressed as an integer, what is its last digit?

Solution

Let's start by examining the last digit of various powers of 8 .

$$
\begin{aligned}
& 8^{1}=8 \\
& 8^{2}=64 \\
& 8^{3}=512 \\
& 8^{4}=4096 \\
& 8^{5}=32768 \\
& 8^{6}=262144 \\
& 8^{7}=2097152 \\
& 8^{8}=16777216
\end{aligned}
$$

Notice that the last digit repeats every four powers of 8 . The pattern continues. 8^{9} ends with $8,8^{10}$ ends with $4,8^{11}$ ends with $2,8^{12}$ ends with 6 , and so on. Starting with the first power of 8 , every four consecutive powers of 8 will have the last digit $8,4,2$, and 6 .

We need to determine the number of complete cycles by dividing 2011 by 4.

$$
\frac{2011}{4}=502 \frac{3}{4}
$$

There are 502 complete cycles and $\frac{3}{4}$ of another cycle. $502 \times 4=2008$ so 8^{2008} is the last power of 8 in the $502^{\text {nd }}$ cycle and therefore ends with 6 .

To go $\frac{3}{4}$ of the way into the next cycle tells us that the number 8^{2011} ends with the third number in the pattern, namely 2 . In fact, we know that 8^{2009} ends with $8,8^{2010}$ ends with $4,8^{2011}$ ends with 2 , and 8^{2012} ends with 6 because they would be the numbers in the $503^{\text {rd }}$ complete cycle of the pattern.

Therefore, 8^{2011} ends with the digit 2.

