Problem of the Week Grade 7 and 8

POWERful Solution

Problem

 8^3 means $8 \times 8 \times 8$ and equals 512 when expressed as an integer. When 8^{2011} is expressed as an integer, what is its last digit?

Solution

Let's start by examining the last digit of various powers of 8.

 $8^{1} = 8$ $8^{2} = 64$ $8^{3} = 512$ $8^{4} = 4\ 096$ $8^{5} = 32\ 768$ $8^{6} = 262\ 144$ $8^{7} = 2\ 097\ 152$ $8^{8} = 16\ 777\ 216$

Notice that the last digit repeats every four powers of 8. The pattern continues. 8^9 ends with 8, 8^{10} ends with 4, 8^{11} ends with 2, 8^{12} ends with 6, and so on. Starting with the first power of 8, every four consecutive powers of 8 will have the last digit 8, 4, 2, and 6.

We need to determine the number of complete cycles by dividing 2011 by 4.

$$\frac{2011}{4} = 502\frac{3}{4}$$

There are 502 complete cycles and $\frac{3}{4}$ of another cycle. $502 \times 4 = 2008$ so 8^{2008} is the last power of 8 in the 502^{nd} cycle and therefore ends with 6.

To go $\frac{3}{4}$ of the way into the next cycle tells us that the number 8^{2011} ends with the third number in the pattern, namely 2. In fact, we know that 8^{2009} ends with 8, 8^{2010} ends with 4, 8^{2011} ends with 2, and 8^{2012} ends with 6 because they would be the numbers in the 503rd complete cycle of the pattern.

Therefore, 8^{2011} ends with the digit 2.

