



# Grade 8

## NUMBER SENSE AND NUMERATION: SQUARE ROOTS

This resource may be copied in its entirety, but is **not to be used for commercial purposes** without permission from the Centre for Education in Mathematics and Computing, University of Waterloo.

Play Square Root Tic-Tac-Toe first.

Click on <u>http://www.funbrain.com/cgi-bin/ttt.cgi?A1=s&A2=17&A3=0</u> Read the **Lesson on Square Roots** at <u>http://argyll.epsb.ca/jreed/math8/strand1/1105.htm#17</u> You can go to <u>www.wiredmath.ca</u> for the links.

The square root of 16 is written as  $\sqrt{16}$ . The value of  $\sqrt{16}$  is 4 since (4) × (4) = 16. The **square root** of a number is one of its two *equal* factors.

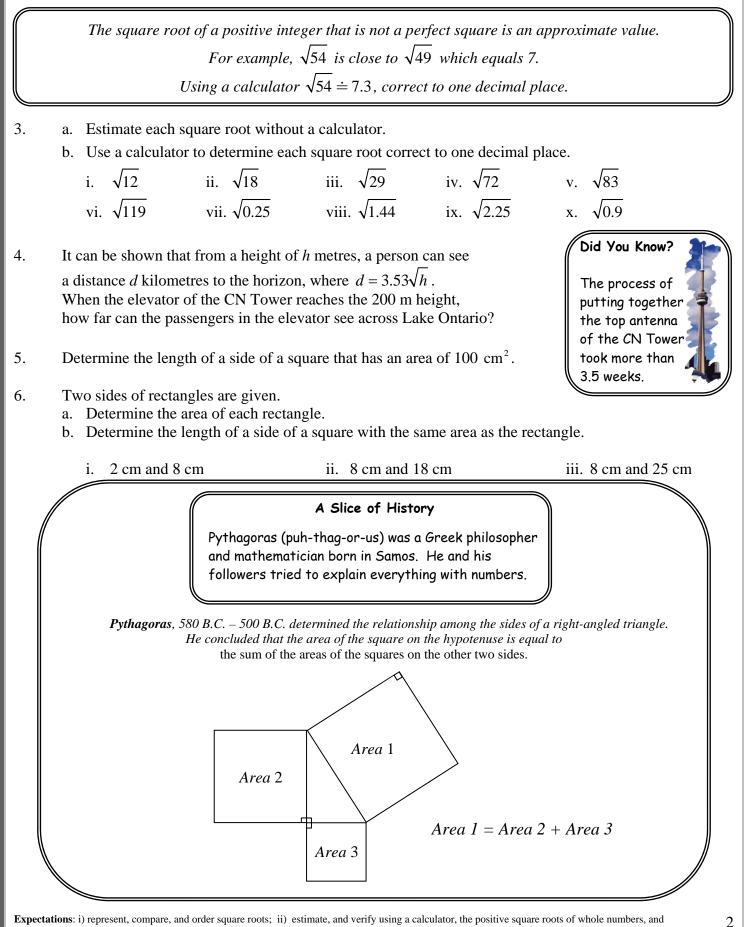
For example,  $\sqrt{144} = 12$  since  $(12) \times (12) = 144$ .

The symbol  $\sqrt{}$  is called a radical sign. The number under a radical sign is called the radicand. For example, for  $\sqrt{5}$  , 5 is the radicand.

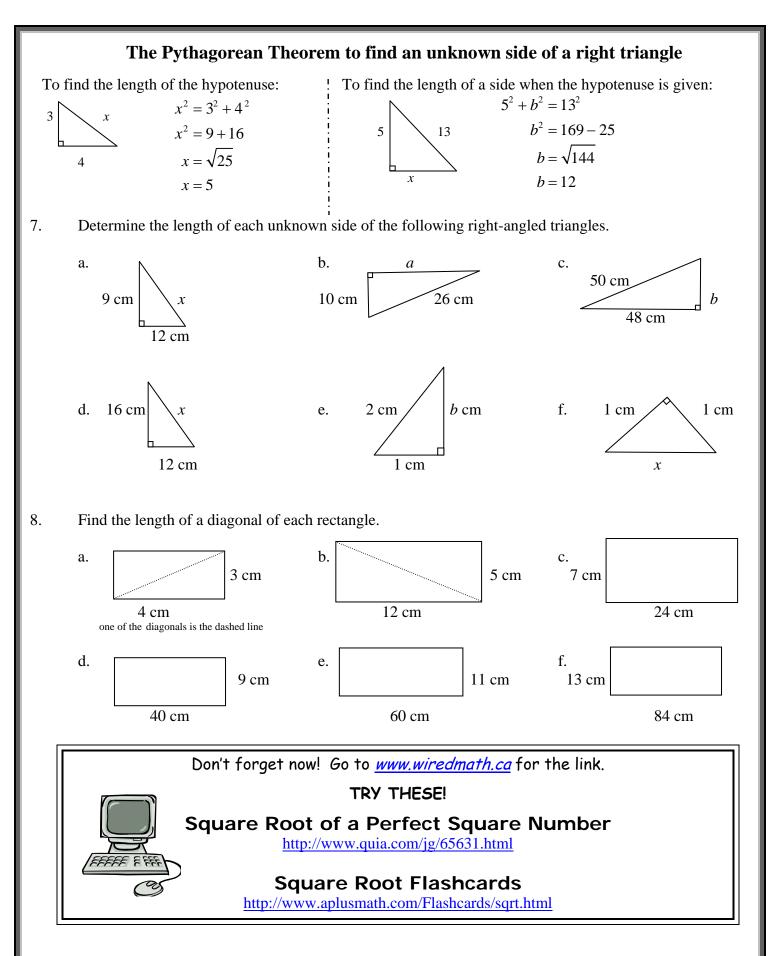
1. Determine each square root.

| a. v | $\sqrt{25}$ | b. | $\sqrt{49}$  | c. | $\sqrt{121}$  | d. | $\sqrt{9}$   |
|------|-------------|----|--------------|----|---------------|----|--------------|
| e. v | $\sqrt{0}$  | f. | $\sqrt{64}$  | g. | $\sqrt{36}$   | h. | $\sqrt{4}$   |
| i. v | 81          | j. | $\sqrt{100}$ | k. | $\sqrt{1}$    | 1. | $\sqrt{256}$ |
| m. v | 225         | n. | $\sqrt{169}$ | 0. | √ <u>196</u>  | p. | $\sqrt{400}$ |
|      |             | q. | $\sqrt{625}$ | r. | $\sqrt{1024}$ |    |              |

Note: 
$$\sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2}$$


2. Determine each square root

a. 
$$\sqrt{\frac{49}{36}}$$
b.  $\sqrt{\frac{121}{64}}$ 
c.  $\sqrt{\frac{25}{16}}$ 
d.  $\sqrt{\frac{100}{16}}$ 


e.  $\sqrt{\frac{144}{225}}$ 
f.  $\frac{\sqrt{0}}{\sqrt{81}}$ 
g.  $\sqrt{\frac{9 \times 9}{3 \times 3}}$ 
h.  $\sqrt{\frac{12 \times 12}{6 \times 6}}$ 

i.  $\sqrt{\frac{10 \times 10}{4 \times 4}}$ 
j.  $\sqrt{\frac{8 \times 8}{12 \times 12}}$ 
k.  $\sqrt{\frac{2 \times 2}{3 \times 3}}$ 
l.  $\sqrt{\frac{6 \times 6}{7 \times 7}}$ 

**Expectations**: i) represent, compare, and order square roots; ii) estimate, and verify using a calculator, the positive square roots of whole numbers, and distinguish between whole numbers that have whole-number square roots (i.e., perfect square numbers) and those that do not. *For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit <u>www.cemc.uwaterloo.ca</u>.* 



distinguish between whole numbers that have whole-number square roots (i.e., perfect square numbers) and those that do not. For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit www.cemc.uwaterloo.ca.



**Expectations**: i) represent, compare, and order square roots; ii) estimate, and verify using a calculator, the positive square roots of whole numbers, and distinguish between whole numbers that have whole-number square roots (i.e., perfect square numbers) and those that do not. *For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit <u>www.cemc.uwaterloo.ca.</u>* 

## CHALLENGE YOURSELF

9. Without using a calculator, determine each value.

Write your answer as a fraction in the form  $\frac{a}{b}$ ,  $b \neq 0$ .

a. 
$$\sqrt{\frac{50}{32}}$$
 b.  $\sqrt{\frac{128}{450}}$  c.  $\sqrt{\frac{48}{147}}$  d.  $\frac{\sqrt{45}}{\sqrt{125}}$  e.  $\frac{\sqrt{288}}{\sqrt{200}}$ 

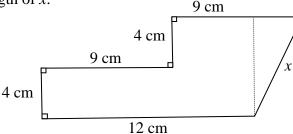
10. The cube, as shown, has a total surface area of  $1176 \text{ cm}^2$ . Determine the length of one of its edges.

#### A Slice of History

Sometimes called Hero, Heron of Alexandria was an important geometer and worker in mechanics.

11. If *a*, *b* and *c* represent the lengths of the sides of any triangle, the area is given by

Heron's Formula 
$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
 where  $s = \frac{a+b+c}{2}$ 


- a. Determine the exact area of a triangle with sides 7 cm, 24 cm and 25 cm. Discuss another method to find the area of this triangle. Why does the method work?
- b. Determine the area of a triangle with sides of length 16 cm, 16 cm and 8 cm. Round the answer off to the nearest unit.

### **EXTENSIONS**

12. A square is inscribed in a circle, as shown. The area of the square is 98 cm<sup>2</sup>. Determine the radius of the circle.



13. Determine the length of *x*.



14. Observe that  $1^3 + 2^3 = (1+2)^2$ ,  $1^3 + 2^3 + 3^3 = (1+2+3)^2$  and  $1^3 + 2^3 + 3^3 + 4^3 = (1+2+3+4)^2$ . If the same pattern holds, then what is the value of  $\sqrt{1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3}$ ?

**Expectations**: i) represent, compare, and order square roots; ii) estimate, and verify using a calculator, the positive square roots of whole numbers, and distinguish between whole numbers that have whole-number square roots (i.e., perfect square numbers) and those that do not. *For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit <u>www.cemc.uwaterloo.ca</u>.*