Grade 8

Number Sense and Numeration: Integers - Graphical Representation

This resource may be copied in its entirety, but is not to be used for commercial purposes without permission from the Centre for Education in Mathematics and Computing, University of Waterloo.

Play Space Coupe http://pbskids.org/cyberchase/games/negativenumbers and

Circle 99 http://matti.usu.edu/nlvm/nav/grade g_3.html first.

> You may also go to www.wiredmath.ca for the link.

1. Write each statement as an integer.
a. A deposit of $\$ 125$ into a bank account.
b. A drop of 4 metres.
2. For each sentence, explain what you would do to get back to where you began.
a. You go up twelve floors on an elevator.
b. You drain 5 litres of water from a tub.
3. Discuss with a partner each of the following statements.
a. The quotient when zero is divided by any integer except zero is always zero.
b. If two negative integers are multiplied together, their product is a positive integer.
c. The product of a negative integer and a positive integer is a negative integer.
d. The quotient of any positive integer divided by a negative integer has a negative sign.
4. Write a positive or negative integer for each point labelled by the letter.

Mathematicians have used a number of different symbols for multiplication and division throughout history.

Multiplication

The $\operatorname{dot}(\cdot)$
The asterisk (*) (*)
The cross (x)

Division

Close parenthesis)
The colon (:)
The obelus (:)

A \qquad B \qquad
C \qquad
D \qquad
E \qquad
F \qquad
G \qquad
H \qquad
5. Arrange the integers in order from smallest to largest.
a. $-1,-6,4,-3$
b. $3,0,-2,-6,-4$
c. $-25,16,-9,36,-49$

Multiplication

The product of two integers

6. Write an integer for each product.
a. $(+4) \times(+7)$
b. $\quad(+6) \times(+3)$
c. $(+1) \times(+4)$
d. $\quad(+7) \times(+4)$
e. $(+3) \times(+6)$

The product of a positive integer and a negative integer

Example.

Mohammad decides to follow an exercise program designed by his trainer. He anticipates that his program will lead to a weight loss of 2 kg per month for the first four months. What will be Mohammad's total change in weight in four months?

Solution.

-2 represents the loss of weight each month.
Weight change for four months will be
$(-2)+(-2)+(-2)+(-2)$
$=4(-2) \quad$ repeated addition can be written as a multiplication
$=-8 \quad$ Mohamad's weight change is -8 kg after four months.
The product of a positive and a negative integer is a negative integer.
7. Write an integer for each product.
a. $\quad(+3) \times(-7)$
b. $\quad(+5) \times(-8)$
c. $(-1) \times(+4)$
d. $(-9) \times(+5)$
e. $(+1) \times(-1)$

The product of two negative integers

Consider this pattern.		Complete these $(+4) \times(-3)=-12$	As the multiplier decreases
multiplications.	Each product increases by		
$(+3) \times(-3)=-9$	$y+1$ the product increases	$(-2) \times(+3)=$	2 . The products are
$(+2) \times(-3)=-6$	$y+3$.	$(-2) \times(+2)=$	$-6,-4,-2,0,2,4$ and 6.
$(+1) \times(-3)=-3$	To continue this pattern	$(-2) \times(+1)=$	The product of two
$(0) \times(-3)=$	suggests the last three	$(-2) \times(0)=$	negative integers is a
$(-1) \times(-3)=$	products are 0,3 and 6.	$(-2) \times(-1)=$	positive integer.
$(-2) \times(-3)=$		$(-2) \times(-2)=$	Also, the product of any
$(-3) \times(-3)=$		$(-2) \times(-3)=$	integer and zero is zero.

8. Write an integer for each product.
a. $(-5) \times(-6)$
b. $\quad(-4) \times(-8)$
c. $(-1) \times(-7)$
d. $(-9) \times(-8)$
e. $(-1) \times(0)$

Division

Division is the inverse of multiplication. $(+3) \times(-5)=-15$. Therefore, $\frac{-15}{+3}=-5$ and $\frac{-15}{-5}=3$.
The quotient of positive and negative integer is a negative integer.
The quotient of two negative integers is a positive integer.
9. Write an integer for each quotient.
a. $\frac{-10}{5}$
b. $\frac{12}{-4}$
c. $\frac{-24}{-6}$
d. $\frac{-14}{2}$
e. $\frac{22}{-11}$
f. $\frac{-27}{-9}$

Rules for multiplication of integers

1. The product of two positive integers is a positive integer.
2. The product of two negative integers is a positive integer.
3. The product of a positive integer and a negative integer is a negative integer.

Summary

$$
\left.\begin{array}{ll}
\text { Same signs } & \left.\begin{array}{l}
\text { Different signs } \\
(+)(+) \\
(-)(-)
\end{array}\right\}=(+)
\end{array} \begin{array}{l}
(+)(-) \\
(-)(+)
\end{array}\right\}=(-)
$$

Rules for division of integers

The 'rules of signs' for dividing integers are the same as those for multiplying integers

Summary

Same signs
$\left.\begin{array}{l}\frac{(+)}{(+)} \\ \frac{(-)}{(-)}\end{array}\right\}=(+)$

Different signs
$\left.\begin{array}{l}\frac{(+)}{(-)} \\ \frac{(-)}{(+)}\end{array}\right\}=(-)$

Helpful analogy

Two players who are on different teams have a negative product. E.g. $; \times \times$ equals a negative $: \cdot$
10. Using integers, write a mathematical sentence describing each of the following.
a. The temperature is dropping $2^{\circ} \mathrm{C}$ per hour for eight hours.
b. An eight-piece pizza is to be shared by four students.
11. Determine the value of each product.
a. $(+10) \times(+3)$
b. $(+4) \times(-7)$
c. $(-8) \times(+7)$
d. $(-9) \times(-6)$
e. $(+8) \times(+4)$
f. $(+3) \times(-11)$
g. $(-12) \times(+1)$
h. $(-5) \times(-5)$
i. $\quad(+1) \times(+7)$
j. $\quad(-9) \times(+8)$
k. $(+12) \times(-12)$
l. $(-6) \times(-6)$
12. Determine the value of each quotient.
a. $(-48) \div(+6)$
b. $(-63) \div(-7)$
c. $(+24) \div(+6)$
d. $(35) \div(-7)$
e. $(-11) \div(+11)$
f. $(-81) \div(-9)$
g. $(+72) \div(+12)$
h. $(49) \div(-7)$
13. Determine the missing integer for each equality.
a. $\quad(+7) \times(\quad)=+28$
b. $(-3) \times(\quad)=+36$
c. $\quad(\quad) \times(-9)=-63$
d. $\quad(+12) \times(\quad)=+84$
e. $(-7) \times(\quad)=-56$
f. $\quad(\quad) \times(-4)=-48$
g. $(+36) \div(\quad)=-6$
h. $(-72) \div(\quad)=+8$
i. $\quad(+42) \div(\quad)=-6$
j. $\quad(\quad) \div(-2)=6$
k. $(\quad) \div(-4)=5$

1. $(-44) \div(-4)=(\quad)$
2. A storeowner pays $\$ 30$ per square metre per year for rent. The store has an area of 1200 square metres. What is his yearly rent?
3. An appliance-store owner had daily receipts as follows:

Monday $\$ 480$, Tuesday $\$ 975$, Wednesday $\$ 809$, Thursday $\$ 727$, Friday $\$ 1043$, Saturday $\$ 2980$. What were the average daily receipts?
16. Calculate the mean of the following profits and losses \$15, - \$36, \$47, -\$11, - \$64, \$37.

17. What number when divided by 12 gives a quotient of 16 and a remainder of 8 ?

Did You Know?

Divisibility by 13. Delete the last digit of the number and then subtract 9 times the deleted digit. If the remaining number is divisible by 13 then so is the original number.

Don't forget now! Go to www.wiredmath.ca for the link.

TRY THESE!

Have fun practicing your multiplication tables at http://www.berghuis.co.nz/abiator/tables/frame1.html

CHALLENGE YOURSELF!

18. What number when divided by 83 gives a quotient of -37 and a remainder of 23 ?
19. The present temperature is $16^{\circ} \mathrm{C}$. A cold front enters the atmosphere causing the temperature to drop an average of $3^{\circ} \mathrm{C}$ per hour for 8 hours. Explain whether or not any precipitation that falls after 8 hours will be snow or rain. What increase or decrease in temperature is necessary to bring the temperature to the freezing point?
20. Aircraft A departed from an airport at 8:00 flying at $400 \mathrm{~km} / \mathrm{h}$. Aircraft B departed from the same airport at 11:00 flying at $550 \mathrm{~km} / \mathrm{h}$, on the same course as A. How far apart were they at 17:00?

EXTENSIONS

21. Absolute value is the size, or magnitude, of a number x with or without the negative sign. For example, the absolute value of 8 or of -8 is 8 . We write absolute value using vertical lines so the "absolute value of x " is denoted $|x|$.
a. Determine each of the following.
i. $|-13|$
ii. $|0|$
iii. $|5|$
iv. $|-18|-|-7|$
v. $|-9|-3|4|-2|-4|$
b. Determine the number of integral solutions of $|x| \times|y|=20$.
