Grade 8

Number Sense and Numeration: Fractions and Rationals

This resource may be copied in its entirety, but is not to be used for commercial purposes without permission from the Centre for Education in Mathematics and Computing, University of Waterloo.

Play the Fish Tank game first! Levels 2 and 3 are recommended. Click on http://www.bbc.co.uk/education/mathsfile/shockwave/games/fish.html or go to www.wiredmath.ca for the link.

1. Write a fraction to represent the shaded part. Write your final answer in lowest terms.

2. Write a mixed number to represent points A and B below.

3. Change to equivalent mixed numbers in lowest terms.
a. $\frac{13}{4}=\square \frac{}{4}$
$\frac{6}{7} \quad \begin{aligned} & \text { is a proper fraction } \\ & \text { (less than one but larger than zero) }\end{aligned}$
b. $\frac{7}{6}=\square$
c. $-\frac{3}{2}=\square$
$-3 \frac{5}{7}$ is equivalent to the rational $-\frac{26}{7}$
4. Write each mixed number as an improper fraction.
a. $5 \frac{3}{4}$
b. $2 \frac{5}{9}$
c. $-1 \frac{2}{5}$
5. Write either > or < between each pair of rational numbers.

Keep in Mind...

$$
\frac{-3 \frac{4}{5}=-\frac{5 \times 3+4}{5}=-\frac{19}{5}}{\underline{5 \frac{3}{4}=5+\frac{3}{4}=5 \times \frac{4}{4}+\frac{3}{4}=\frac{23}{4}}}
$$

a. $\frac{3}{8} \frac{2}{5}$
b. $\frac{5}{6} \frac{4}{5}$
c. $-\frac{5}{6} \quad-\frac{9}{11}$
d. $2 \frac{3}{4} \quad 2 \frac{2}{5}$
6. Write the fractions $1 \frac{1}{4},-\frac{7}{8},-\frac{1}{2}, \frac{7}{12}$ in ascending order.
7. The value of $\frac{n}{40}$ lies between $\frac{1}{5}$ and $\frac{1}{4}$. Determine a possible value of n.
8. Determine the value of each of the following. Write your final answer in lowest terms.
a. $\frac{3}{8}+\frac{2}{3}$
b. $\frac{4}{3}-\frac{3}{5}$
c. $\frac{4}{5}+\frac{1}{2}-\frac{3}{4}$
d. $\frac{2}{3}+\frac{7}{15}$
e. $\frac{5}{6}-\frac{1}{2}-\frac{2}{3}$
f. $4-\frac{8}{9}-\frac{1}{3}$
g. $\frac{3}{5}-\frac{7}{12}+\frac{5}{6}$
h. $\frac{3}{5}+\frac{3}{5}+\frac{3}{5}-\frac{4}{7}-\frac{4}{7}$
9. Determine each of the following products or quotients.
a. $\frac{3}{7} \times \frac{2}{5}$
b. $\frac{3}{5} \times 7$
c. $32 \times \frac{7}{2}$
d. $1 \frac{3}{4} \times 5 \frac{3}{10}$
e. $\frac{6}{7} \div \frac{3}{5}$
f. $\frac{2}{9} \div \frac{1}{4}$
g. $\frac{5}{9} \div 1 \frac{2}{3}$
h. $5 \frac{3}{5} \div 1 \frac{2}{3}$
10. The sum of the numbers in each row, column, and diagonal is $-\frac{1}{2}$.

Complete the magic square.

11. A recipe for fruit punch to serve 4 persons follows: $\frac{1}{2}$ cup orange juice, 1 cup pineapple juice,
 $\frac{3}{5}$ cup of water, and $\frac{1}{3}$ cup syrup.
a. What amount of each ingredient would you use to make punch for 6 persons?
b. What amount of each ingredient would you use to make punch for 3 persons?
12. Simplify each of the following.
a. $\frac{5}{6}-\frac{1}{3} \times \frac{1}{2}$
b. $16 \times \frac{3}{8}+\frac{2}{5}$
c. $3 \frac{1}{2} \div \frac{3}{4} \times \frac{2}{3}$
d. $\frac{2}{5} \times \frac{3}{7} \div \frac{9}{35}$
e. $5\left(\frac{2}{3}\right)+4\left(\frac{5}{6}\right) \div 3\left(\frac{1}{4}\right)$
g. $\left(\frac{3}{4}-\frac{1}{3}\right) \times \frac{3}{8}+\frac{1}{4}$
h. $5^{2}-2 \frac{2}{3} \times 3-\frac{3}{5}$

A Slice of History
In ancient times, humans observed fractions in nature.

In particular, they noticed that each season lasts approximately $\frac{1}{4}$ of the year.

TRY THESE!
Simplifying Fractions
http://www.aaamath.com/B/fra66hx2.htm
Adding Fractions with different denominators
http://www.aaamath.com/B/fra66kx2.htm
Multiplying Fractions
http://www.aaamath.com/B/fra66mx2.htm
13.

TRY THIS NUMBER PROBLEM!

Using sixteen 4's write an expression that has a value of 1000 .

EXTENSIONS!

14. Lesley gave $\frac{1}{4}$ of a pizza to her sister and another $\frac{1}{4}$ to her mother and $\frac{1}{3}$ of the remaining to her father. What fraction of the pizza is left for her friend Matt?

15. Determine the reciprocal of $1+\frac{1}{1+\frac{1}{2}}$.
16. If $11=1-\frac{1}{1-\frac{1}{1-\frac{1}{x}}}$, determine x.

Did You Know?

Two men from the city of Bologna, Italy expressed the square root of 13 and the square root of 18 as continued fractions.

$\sqrt{18}$

