

1

Grade 7

NUMBER SENSE AND NUMERATION: MULTIPLES, FACTORS AND SQUARE ROOTS

This resource may be copied in its entirety, but is **not to be used for commercial purposes** without permission from the Centre for Education in Mathematics and Computing, University of Waterloo.

Play **The Factor Game** <u>http://illuminations.nctm.org/index_d.aspx?id=433</u> and **Multiplication Mystery** <u>http://www.hbschool.com/activity/mult/mult.html</u> first! You may go to *www.wiredmath.ca* for the link.

> 8, 12 and 28 are **multiples** of 4 because $8 = 4 \times 2$, $12 = 4 \times 3$ and $28 = 4 \times 7$.

1. a. Complete the table.

	1	2	3	4	5	6	7	8	9	10	11	12
Multiples of 3	3											
Multiples of 7	7											

b. Which numbers from the chart are multiples of both 3 and 7?

2. a. Complete the table.

	1	2	3	4	5	6	7	8	9	10	11	12
Multiples of 4	4											
Multiples of 6	6											

b. Which numbers are multiples of both 4 and 6? _

c. What number is the least common multiple (LCM) of 4 and 6?

3. a. Write the smallest twelve positive numbers that are multiples of both 2 and 6.

- b. What is the least common multiple of (LCM) of 2 and 6?
- 4. Determine the least common multiple of these pairs of numbers.

a. 3, 4 b. 5, 6 c. 6, 8 d. 2, 14 e. 4, 10 f. 9, 12

Divisibility Rules for Integers

2 – A number is divisible by 2 if its last digit is 0, 2, 4, 6, or 8; i.e., if the number is even.

3 – A number is divisible by 3 if the sum of its digits is divisible by 3.

- E.g. 42 is divisible by 3 because 4 + 2 = 6 and 6 is divisible by 3
- 4 A number is divisible by 4 if the number formed by its last two digits is divisible by 4.
- 5 A number is divisible by 5 if its last digit is 0 or 5.
- 6 A number is divisible by 6 if it is divisible by 2 and by 3.
- 8 A number is divisible by 8 if the number formed by its last three digits is divisible by 8.
- 9 A number is divisible by 9 if the sum of its digits is divisible by 9.
- 10 A number is divisible by 10 if its last digit is 0.

Expectations: i) represent, compare, and order multiples, factors, and square roots; ii) generate multiples and factors, using a variety of tools and strategies; iii) represent perfect squares and square roots using a variety of tools. *For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit <u>www.cemc.uwaterloo.ca</u>.*

5.	Use the divisibility rules to determine which number is not a multiple of the first number.												
	a. 3; 23, 9, 18, 42 b. 5; 45, 30, 62, 75 c. 4; 28, 116, 196, 154												
	d. 3; 48, 72, 66, 88 e. 9; 54, 117, 63, 134 f. 8; 96, 120, 192, 178												
	Did You Know?												
	Traffic lights were used before motorcars became popular. In 1868, a												
	England to control the flow of horse buggies and pedestrians.												
6.	A car dealership has 84 new vehicles. Can the new vehicles be arranged in three rows with the same number of vehicles in each row?												
7.	The month of January has 31 days. On Saturday January 1, 2005, Mao began an exercise program by												
	lifting weights and running three kilometres. Mao decided to weight train every second day and run												
	a. On which day of the week and on what date in January will he next both lift weights and run?												
	b. How many times in January will he both lift weights and run on the same day?												
	d. If Mao continues to run every third day, how many times would he run in 2005?												
8.	Buns are sold by the dozen (12) and hot dogs come in packages of 8.												
	What is the fewest number of each required so that there are no buns or hot dogs left over after lunch?												
ĺ	A factor is a natural number that divides exactly into another number; that is, without a remainder.												
	» For example, the factors of 10 are 1, 2, 5, and 10.												
	A prime number is a natural number greater than 1 that has only two factors, itself and 1. » For example, 29 has two factors 1 and 29.												
	A composite number is a natural number that has factors other than itself and 1.												
	 » For example, 8 has four factors 1, 2, 4, 8. Prime factorization is an expression showing a composite number as a product of its prime numbers. 												
	» For example, the prime factorization of 105 is $3 \times 5 \times 7$.												
Ň													
9	a List all the factors of each number Factor Tree												
).	i. 9 ii. 17 iii. 16 iv. 36 v. 43 vi. 100												
	b. Which of the numbers in question 9a are prime and which are composite?												
	15 7												
10.	Write the prime factorization of each number.												
	a. 14 b. 110 c. 123												
	d. 36 e. 350 f. 1000												
Expectat	ions: i) represent, compare, and order multiples, factors, and square roots; ii) generate multiples and factors, using a variety of tools and strategies; iii)												
represent please vis	perfect squares and square roots using a variety of tools. For more activities and resources from the University of Waterloo's Faculty of Mathematics, it <u>www.cemc.uwaterloo.ca</u> .												

2

11.	 a. Write the prime factorization of each number in the pair. b. Determine the greatest common factor (GCF) of each pair. 													
	i. 10 and 15 ii. 12 and 20 iii. 18 and 24 iv. 21 and 35 v. 54										54 and 72			
	A Slice of HistoryThe ancient mathematician Archimedes stated that $\sqrt{3}$ is greater than $\frac{265}{153}$ but less than $\frac{1351}{780}$. To this day, mathematicians do not know howArchimedes arrived at this result.													
	The square root of a perfect square is one of the two <i>equal</i> factors. For example, the square root of 25 is written as $\sqrt{25} = 5$ since $(5) \times (5) = 25$.													
12.	Determine the square root of each number. $$													
	a. $\sqrt{4}$ b. $\sqrt{9}$ c. $\sqrt{1}$ d. $\sqrt{16}$ e. $\sqrt{0}$										$\sqrt{0}$			
13	$ \begin{array}{c} $													
15.	Whole		1	4	0	16		36		64	Q1			144
	number Square root	0	1	4	9	10	5	30	7	04	01	10	11	144
	Squares and s	quare ro	ots occu	r in appl	ications.	. It is an	advanta	ge to m	emorize	the squa	res and	square r	oots in	this chart.
14.	Determine t	hese sq	uare ro	oots. U	se a cal	lculator	only a	s a last	resort.					
	a. $\sqrt{400}$		b.	$\sqrt{225}$		c.	$\sqrt{32^2}$	- 		d. $\sqrt{2}$	56		e.	$\sqrt{169}$
	f. $\sqrt{361}$		g.	√ <u>196</u>		h. $\sqrt{576}$ i. $\sqrt{900}$ j.							j.	√625
15.	Determine t	he leng	th of a	side a	square	that ha	s an are	a of 25	5 cm^2 .					\checkmark
16.	A square ha	s an are	ea of 36	5 cm^2 .	What	is the le	ength o	feach	side of	the squ	are?			
17.	a. Determine the area of the rectangle at the right.b. If this rectangle were a square with the same area, what would be the length of each side?													
18.	Two sides o a. Determi b. Determi	f a rect ne the a ne the 1	angle a area of length o	are give each re of one s	n. ectangle side of	e. a squar	e with	the san	ne area	as the	rectang	gle.	9 c	m
	i. 4 cm	and 1	б ст	ii.	5 cm a	and 45	cm	iii. 7	7 m and	d 28 m				
Expecta represent	tions: i) represent, c	ompare, an square roo	d order mu	ultiples, fac variety of	ctors, and s tools. <i>For</i>	square root • <i>more acti</i>	s; ii) gener sities and r	ate multip resources j	oles and fa from the U	ctors, using Iniversity of	g a variety f Waterloo	of tools ar o's Faculty	nd strate	gies; iii) hematics,

Expectations: i) represent, compare, and order multiples, factors, and square roots; ii) generate multiples and factors, using a variety of tools and strategies; iii) represent perfect squares and square roots using a variety of tools. *For more activities and resources from the University of Waterloo's Faculty of Mathematics, please visit www.cemc.uwaterloo.ca.*

4