Grade 7

Extra Challenges - set I

This resource may be copied in its entirety, but is not to be used for commercial purposes without permission from the Centre for Education in Mathematics and Computing, University of Waterloo.

Answers:

1. Initially, Dean has 1000 Canadian dollars, which he can exchange for 7000 Hong Kong dollars $(7 \times 1000=7000)$. At the end of his trip, he has 56 Canadian dollars, which he can exchange for 448 Hong Kong dollars $(56 \times 8=448)$. That means that over the trip he spent $7000-448=6552$ Hong Kong dollars.
2. At the centre of the heptagon where all the vertices meet, the sum
of the all the angles must be 360°, because the angles form a circle.
We know that $\angle G H E=90^{\circ}$ because it's a vertex of a square, and since all the angles in an equilateral triangle are 60°,
 $\angle G H A=\angle A H B=\angle B H C=\angle D H E=60^{\circ}$.
Thus, $\angle C H D=360^{\circ}-90^{\circ}-4\left(60^{\circ}\right)=30^{\circ}$. Since $\triangle C D H$ is
isosceles, $\angle C D H=\angle H C D=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$. Thus, $\angle H D C=75^{\circ}$.
3. The population doubles every second, so half of the maximum population is achieved 1 second before the maximum population is achieved. Thus, the bacteria will reach half the maximum population at 59 seconds.
4. Creating a list of a, b, c, d, and e, where $a<b \leq c \leq d \leq e$, we know c must be 25 because it's the median. If the mode is 28 , at least 2 of the terms must be 28 . Since there are only 2 numbers larger than $25, d$ and e must be 28 . The mean is 22 , so

$$
\begin{aligned}
\frac{a+b+25+28+28}{5} & =25 \\
a+b+81 & =110 \\
a+b & =29
\end{aligned}
$$

There is only one mode, so $b<c$ and $c=25$, thus the largest b can be is 24 , so the smallest a can be is 5 . The smallest b can be is 15 which means that the largest a can be is 14. Thus, a can be any number between 5 and 14, inclusive.
5. A side of a triangle cannot be greater than the sum of the other two sides. Looking at $\triangle A C D, A C$ must fall within the interval $2<A C<8$. In $\triangle A B C, A C$ must fall within the interval $5<A C<13$. The intervals of numbers $A C$ can be are numbers within both intervals, so $5<A C<8$.

